
JavaScript Classes

Relatively new
(2015)

How we used to write code
function Dog() {
 this.bark = function () {
 return 'bark'
 }
 this.eat = function () {
 return 'mmmmmm'
 }
}

const riley = new Dog()
const roxy = new Dog()
const rover = new Dog()

riley.bark()
roxy.eat()
rover.bark()

JavaScript is an Object
Prototypical language
• Works on prototypes (the attributes of an object)

Along came classes
• Allows for a more common syntax

• Familiar to Object Oriented developers from other
languages (C++, C#, Java, Python, Ruby, etc)

Redefining Dogs
Let's redefine our Dog
class Dog {
 bark() {
 return 'bark'
 }

 eat() {
 return 'mmmm'
 }
}

Public field declarations
• Do we have properties as we do in C#?

• Yes, called public field declarations
class Dog {
 name = 'Not Named'

 bark() {
 return `${this.name} says bark!`
 }

 eat() {
 return 'mmmm'
 }
}

Usage
const newDog = new Dog()
newDog.bark() // Not Named says bark!
newDog.name // Not Named
newDog.name = 'Fluffy'
newDog.bark() // Fluffy says bark!
newDog.name // Fluffy

Notice the use of this
Inside a function of a class, this refers to the current object
and must be used to distinguish a local variable name versus
the field this.name

NOTE: The idea of this in JavaScript can be perplexing and we'll
return to it later.

Constructors
Like C#, JavaScript classes also have constructors. We can allow
the constructor to accept arguments and use them to fill in our
public fields (and other data).
class Dog {
 name = 'Not Named'

 constructor(newName) {
 this.name = newName
 }

 bark() {
 return `${this.name} says bark!`
 }

 eat() {
 return 'mmmm'
 }
}

Now when we create a new dog
we must give it a proper name.
const myPal = new Dog('Fluffy')

myPal.bark() // Fluffy says bark!
myPal.name // Fluffy

Subclasses
Again, like C# we have the idea of subclasses.

NOTE: This idea is used heavily in React as we will see.
class LoudDog extends Dog {
 bark() {
 return `${this.name.toUpperCase()} SAYS BARK!!!!!`
 }

 yell() {
 return 'I am a loud dog, so I yell!'
 }
}

Instantiating subclasses
const jack = new LoudDog('Jack')
jack.bark()

Constructors in subclasses and
super
Subclasses can also have constructors. To ensure the parent
constructor is called, we use super
class LoudDog extends Dog {
 constructor(name) {
 super(name.toUpperCase())
 }

 bark() {
 return `${this.name} SAYS BARK!!!!!`
 }

 yell() {
 return 'I am a loud dog, so I yell!'
 }
}

const barkeyMcBarkson = new LoudDog('Barkey McBarkson')
barkeyMcBarkson.name // 'BARKEY MCBARKSON'

Arrow function methods
There is another way to define methods for a class, to use the
public field definition syntax.
class Dog {
 name = 'Not Named'

 constructor(newName) {
 this.name = newName
 }

 greet = () => {
 return `Hello I am ${this.name}`
 }

 bark() {
 return `${this.name} says bark!`
 }

 eat() {
 return 'mmmm'
 }
}

Understanding this

this in JavaScript (and thus TypeScript) is different.

• Understanding this is challenging

• It is often a gotcha interview question

• Easiest way to remember a good answer is:

• this is always the object that called a function

• OR if the function is an arrow function, it is the object
in scope when the function was defined

!

Example time

const objectOne = {
 theIdentifier: 'object number one',
 someMethod() {
 console.log(this.theIdentifier)
 console.log(this)
 }
}

objectOne.someMethod()

See that this would log object number one and objectOne as the object

const detachedMethod = objectOne.someMethod
detachedMethod()

This logs undefined and window as the object

Window (the global object) is the caller

Now with classes
class Example {
 theIdentifier = 'object number one'

 someMethod() {
 console.log('---- this ----')
 console.log(this)
 console.log('---- this.theIdentifier ----')
 console.log(this.theIdentifier)
 }
}

const objectOne = new Example()
objectOne.someMethod()

Detach the method
const detachedMethod = objectOne.someMethod
detachedMethod()

this becomes undefined

Binding this
We can use bind to tell the object what this is when called:
const detachedMethodBound = objectOne.someMethod.bind(objectOne)
detachedMethodBound()

Binding to whatever variable we
like
const objectTwo = new Example()
objectTwo.theIdentifier = 'whatever'

const detachedMethodBound = objectOne.someMethod.bind(objectTwo)
detachedMethodBound()

Arrow functions!!
Arrow function definition will bind this to the object.
class Example {
 theIdentifier = 'object number one'

 someMethod = () => {
 console.log('---- this ----')
 console.log(this)
 console.log('---- this.theIdentifier ----')
 console.log(this.theIdentifier)
 }
}

const objectOne = new Example()

const detachedMethod = objectOne.someMethod
detachedMethod()

Where would this come up?!?
When using class style React components, or using classes
with addEventListener style coding.

How to avoid the this confusion.
1. Prefer arrow functions when needed

2. Prefer React function based programming over class
based programming

Is this something a new junior
developer needs to worry about?
1. Not really

2. Only to be able to respond to a tricking question during a
job interview.

