How does the internet work?

Start at the beginning

If we visit handbook . suncoast . io how does our browser know where to go?

What are the technologies and processes involved in making this work?

Domains and Hosts

URL

```
Protocol
        Hostname
                   Domain Name
https://handbook.suncoast.io
```

But where is it?

IP Address

- Once the browser realizes you wish to visit
 handbook.suncoast.io it must figure out how to address
 the server.
- The internet itself does not deal in terms of names like handbook.suncoast.io but in terms of a numerical address in the form 1.2.3.4 or 192.168.145.241.

DNS

So how does the browser know to find the IP Address of handbook.suncoast.io?

It uses a service known as DNS (Domain Name Services).

Every client has a preset list of IP Addresses that are equipped to perform a translation of a domain name like handbook.suncoast.io into its IP address 104.248.50.87.

The DNS process allows your computer to quickly translate the address.

- Checks defined DNS server.
- Likely your local router.
- Sees if it is recently resolved, given "Time To Live" (TTL).
- If not, check's its DNS server. Typically your ISP.

This is a nice visualization of the DNS process.

Let's lookup a few addresses

NOTE: Use nslookup if dig isn't available.

```
dig handbook.suncoast.io
```

dig amazon.com

dig www.yahoo.com

We will see that DNS can return multiple values. We will see examples of CNAMEs.

Making Connections

What happens after our computer resolves the address of a server?

- The next thing we need to do is connect to a particular service on that machine.
- Remember when we mentioned that part of the URL is a protocol. This also indicates which service we want to speak to.

Port Numbers

- Each of these services will be *listening* for a connection from a client on a particular port number.
- If you think of the IP Address as a street address of an office building, you can think of the port number as which room in the building the service is in.

[^] Ports 1 - 65535

[^] Ports 1 - 1024 popular, require operating system privileges

Sockets

To connect to a service on a port the computer creates something called a socket.

A socket is a virtual connection between your computer and a port on a remote computer.

Think of it like a pipe that information can flow through in both directions.

Once this socket is established we can *send* information and we can *receive* information in return.

How do we connect to one of these ports?

Let's try connecting like the browser does.

For this, we will be using a tool named netcat.

- On Mac OS install it with: brew install no
- On Windows install it with: scoop install netcat
- On Linux it is likely sudo apt install netcat

To connect: nc handbook.suncoast.io 80

HTTP

Now that we are connected, how do we talk? We use the http protocol that is <u>well documented</u>.

GET a page

GET / HTTP/1.1

Host: handbook.suncoast.io

(important blank line after Host:)

Response (Headers)

- Status codes
- See this <u>funny list of codes</u>

Range	Guide
200-299	Everything ok
300-399	Go elsewhere
400-499	Client mistake
500-599	Server mistake

What are other HTTP headers?

• Common headers:

Header	Meaning
Date	Timestamp on Server
Content-Type	How should this content be interpreted
Content-Length	How long is this content in bytes
Last-Modified	When was this content last modified

Other tools

- curl
- http (httpie)
- Insomnia